

FARABI Jurnal Matematika dan Pendidikan Matematika

p-ISSN 2623-2332 e-ISSN 2798-5474

Penerapan Metode *Backward* untuk Menentukan Persamaan Regresi Linier Berganda pada Dugaan Tindak Pidana di Kota Binjai

Vira Nevriza Yulianti¹, Pasukat Sembiring²

^{1,2}Prodi Matematika, FMIPA, Universitas Sumatera Utara, Medan-Indonesia 20155 **Email:** ¹viranevriza98@gmail.com, ²pasukat.sembiring366@gmail.com

ABSTRAK

Tindak pidana pada hakikatnya adalah perilaku yang bertentangan dengan hukum, undangundang, norma-norma sosial, dan nilai-nilai dalam masyarakat yang dapat merugikan dan mengancam keselamatan dan jiwa orang lain baik secara material maupun immaterial. Adapun yang termasuk dalam tindak pidana adalah penganiayaan, pencurian dengan pemberatan, KDRT, pencurian motor, penggelapan dokumen, dan penipuan. Penelitian ini bertujuan untuk mencari hubungan variabel-variabel bebas terhadap dugaan tindak pidana di Kota Binjai sehingga diperoleh persamaan regresi linier berganda dengan menggunakan Metode Backward. Metode Backward adalah metode eliminasi dimana semua variabel bebas diregresikan dengan variabel terikat. Berdasarkan hasil analisis, penduga yang diperoleh adalah $\hat{Y} = 49,960 + 1,776X_2 +$ $0,689X_4$. Dengan Y merupakan jumlah dugaan tindak pidana, X_2 merupakan pencurian dengan pemberatan, X_4 merupakan pencurian motor. Hasil tersebut menunjukkan kedua variabel berpengaruh signifikan terhadap dugaan tindak pidana di Kota Binjai, sehingga model regresi yang digunakan cukup baik untuk menduga dugaan tindak pidana di Kota Binjai.

Kata kunci: Dugaan Tindak Pidana, Regresi Linier Berganda, Metode Backward

ABSTRACT

Alleged crime is essentially an act that is contrary to law, legislation, social norms, and values in society that can harm and threaten the safety and lives of others, both materially and immaterially. The crimes included in the crime are persecution, vandalism, domestic violence, motorcycle theft, embezzlement of documents, and fraud. This research aims to find the relationship between independent variables on alleged criminal acts in Binjai City so that multiple linear regression equations were obtained using the Backward Method. Backward Method is an elimination method in which all independent variables are regressed with the dependent variable. Based on the results of the analysis, the estimator obtained is $\hat{Y} = 49,960 + 1,776X_2 + 0,689X_4$. Where Y is the number of suspected criminal acts, X_2 is a theft and weighting and X_4 is a motorcycle theft. These results indicate that the two variables have a significant effect on alleged criminal acts in Binjai City, the regression model used is good enough to predict suspected criminal acts in Binjai City.

Keywords: Alleged Crime, Multiple Linear Regression, Backward Method

A. Pendahuluan

Kota Binjai merupakan Kota di Sumatera Utara yang memiliki catatan tingkat tindak pidana yang cukup tinggi. Tindak pidana dapat terjadi di beberapa tempat dengan jangka waktu yang sama atau berbeda. Seseorang dalam melakukan tindak pidana dipengaruhi beberapa faktor, yaitu faktor ekonomi, faktor lingkungan, maupun faktor sosial. Hal mendasar yang membuat seseorang melakukan tindak pidana

adalah faktor ekonomi. Pada umumnya, para pelaku merupakan orang yang memiliki penghasilan rendah atau penduduk miskin, sehingga memaksa diri agar mendapatkan penghasilan tambahan dengan pendidikan dan keterampilan yang dimiliki. Oleh sebab itu, langkah yang dipilih adalah melakukan tindak

pidana seperti dengan cara mencuri, merampok, begal, penipuan dan sebagainya.

Tindak pidana pada hakikatnya adalah perilaku yang bertentangan dengan hukum, undang-undang, norma-norma sosial, dan nilainilai dalam masyarakat yang dapat merugikan dan mengancam keselamatan dan jiwa orang lain baik secara material maupun immaterial. Orang yang dinyatakan terbukti dalam melakukan tindak pidana harus mempertanggungjawabkan perbuatan tersebut dengan pidana.

Analisis regresi linier berganda adalah metode statistika yang dipergunakan dalam menemukan hubungan variabel terikat (dependent variable) dengan lebih dari satu variabel bebas (independent variable) yang bertujuan untuk mengetahui besar variabel bebas mempengaruhi variabel terikat. Selain itu, analisis regresi linier berganda dapat meramalkan nilai variabel terikat jika seluruh variabel bebas telah diketahui nilainya (Ningsih & Dukalang, 2019).

Pada analisis regresi linier berganda terdapat beberapa metode yang digunakan dalam menentukan persamaan regresi linier berganda, salah satunya diantaranya menggunakan Metode *Backward*. Metode *Backward* adalah metode eliminasi langkah mundur dengan meregresikan seluruh variabel bebas dengan variabel terikat (Sembiring, 1995). Metode *Backward* adalah salah satu metode regresi yang baik digunakan karena menerangkan perilaku variabel terikat dengan sebaik-baiknya yaitu memilih variabel bebas dari banyaknya variabel bebas yang tersedia.

1. Uji Kecukupan Sampel

Agar data yang diperoleh dari hasil pengamatan dapat diterima sebagai sampel maka diperlukan uji kecukupan sampel. Dalam menentukan jumlah data yang diperlukan, langkah awal yang diambil yaitu menentukan tingkat ketelitian dan tingkat kepercayaan. Pengaruh dari tingkat ketelitian dan kepercayaan yaitu apabila tingkat kepercayaan semakin besar dan tingkat ketelitian semakin tinggi maka pengukuran yang dibutuhkan semakin banyak.

Hipotesis yang diuji:

 $H_0 = U$ kuran sampel telah memenuhi syarat

 H_1 = Ukuran sampel belum memenuhi syarat

Agar mengetahui kecukupan sampel dapat menggunakan rumus berikut:

$$N' = \left[\frac{\frac{k}{s} \sqrt{N \sum Y_t^2 - (\sum Y_t)^2}}{\sum Y_t} \right]^2$$

Data dikatakan telah mencukupi (H_0 diterima) jika syarat N' < N telah terpenuhi, artinya jumlah data secara spekulatif lebih kecil daripada jumlah data pengamatan sebenarnya. Dan dikatakan tidak mencukupi (H_0 ditolak) jika N' > N.

2. Pengantar Matriks

Matriks adalah bilangan-bilangan riil atau bilangan kompleks yang tersusun menurut baris dan kolom sedemikian hingga membentuk persegi (Howard Anton, 2004). Bentuk umum sebuah matriks adalah:

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1k} \\ a_{21} & a_{22} & \cdots & a_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nk} \end{bmatrix}$$

Determinan adalah nilai skalar yang terkandung dari suatu matriks persegi yang dinotasikan dengan det(A) atau |A|. Apabila determinan bernilai nol, maka matriks persegi tersebut singulir, artinya matriks tidak memiliki invers.

Bila,

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \text{ maka, } |A| = a_{11}a_{22} - a_{12}a_{21}$$

Bila,

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

maka

$$|A| = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33}$$

Transpose matriks adalah mengubah komponen-komponen dalam matriks dengan mengganti posisi elemen pada baris menjadi posisi elemen pada kolom dan sebaliknya. Notasi matriks transpose A adalah A' atau A^t . Bila,

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$
maka,
$$A' = \begin{bmatrix} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \\ a_{13} & a_{23} & a_{33} \end{bmatrix}$$

3. Regresi Linier Berganda

Regresi linier berganda adalah metode yang digunakan dalam memahami suatu peristiwa yang mempengaruhi dua atau lebih variabel. Analisis regresi linier berganda adalah regresi yang mempunyai satu variabel terikat dan dua atau lebih variabel bebas (R. K. Sembiring, 1995).

Model regresi dengan k peubah bebas sebagai berikut.

$$Y_i = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k + \varepsilon_i$$

4. Metode Backward

Metode Backward atau metode eliminasi langkah mundur adalah salah satu metode dengan memasukkan seluruh variabel bebas ke dalam model selanjutnya dikeluarkan secara satu persatu dengan menguji terhadap parameterparameternya dan menggunakan $F_{parsial}$.

Metode *Backward* lebih praktis digunakan daripada metode kemungkinan regresi lainnya, ini berarti bahwa metode ini hanya memeriksa regresi paling baik yang memuat sejumlah peubah peramal tertentu (N.R. Draper & H. Smith, 1992)

Langkah-langkah melakukan prosedur regresi menggunakan Metode *Backward* yaitu:

a. Membentuk persamaan regresi linier berganda variabel bebas, yaitu $X_1, X_2, ..., X_k$. Kemudian membentuk koefisien korelasi ganda, lalu uji keberartian regresi ganda, yaitu $b_1, b_2, ..., b_k$. Jika antara variabel (X dan Y) memiliki skala pengukuran paling sedikit interval dan hubungannya linier, maka keeratan hubungan antara variabel (X dan Y) dapat diperoleh menggunakan formulasi korelasi pearson sebagai berikut:

$$r = \frac{n \sum_{i=1}^{n} Y_{i} X_{i} - \sum_{i=1}^{n} Y_{i} \sum_{i=1}^{n} X_{i}}{\sqrt{n \sum_{i=1}^{n} Y_{i}^{2} - (\sum_{i=1}^{n} Y_{i}^{2})} \sqrt{n \sum_{i=1}^{n} X_{i}^{2} - (\sum_{i=1}^{n} X_{i}^{2})}}$$

b. Menentukan nilai dari $F_{parsial}$ terkecil pertama keluar dari model regresi.

$$F_{parsial} = \frac{a_k^2}{s_k^2}$$

Uji hipotesa:

 H_0 : Tidak terdapat pengaruh signifikan antara Y_i dengan X_i

 H_1 : Terdapat pengaruh signifikan antara Y_i dengan X_i

Keputusan:

Jika $F_{parsial} \le F_{tabel}$, maka H_0 diterima Jika $F_{parsial} > F_{tabel}$, maka H_1 ditolak

c. Membentuk persamaan regresi linier berganda kedua

Jika pada langkah sebelumnya H_0 ditolak, maka proses berhenti dan penduganya yaitu persamaan regresi linier berganda lengkap. Sedangkan, apabila H_0 diterima, maka langkah berikutnya yaitu membentuk persamaan regresi linier berganda dengan memasukkan seluruh variabel X_i (untuk i \neq 1). Sehingga prosedur yang digunakan sama dengan langkah pertama.

d. Pemilihan variabel kedua keluar dari model Dalam menentukan variabel kedua yang keluar dari model dilandaskan pada nilai $F_{parsial}$ dari variabel bebas yang terdapat pada persamaan regresi linier berganda kedua (langkah sebelumnya).

Langkah diatas diulang terus-menerus hingga diperoleh nilai $F_{parsial}$ terkecil dari variabel bebas lebih besar dari F_{tabel} .

5. Pembentukan Model Penduga

Jika langkah-langkah melakukan prosedur regresi menggunakan Metode *Backward* telah selesai, maka dibentuk model penduga linier dari persamaan regresi.

a. Persamaan Penduga pada Metode Backward
Bentuk persamaan penduga yiatu sebagai berikut:

$$\hat{\mathbf{Y}} = a + \sum b_0 X_i$$

b. Koefisien Korelasi Determinasi (Indeks Determinasi)

Koefisien determinasi merupakan nilai statistik yang dipergunakan dalam mengetahui hubungan pengaruh antara dua variabel (Algifari, 2000). Nilai koefisien determinasi memperlihatkan persentase dari variasi nilai variabel terikat yang diterangkan dari hasil persamaan regresi. Untuk mengetahui nilai R^2 dapat menggunakan rumus berikut:

$$R^2 = \frac{b_1 \sum X_1 Y + b_2 \sum X_2 Y + \dots + b_k \sum X_k Y}{\sum Y^2}$$

c. Pembuktian Asumsi

Asumsi (i) : rata-rata residu bernilai sama dengan nol (0)

Asumsi (ii) : variansi (ej) = variansi (ek) = σ^2 Asumsi ini dibuktikan menggunakan uji t, dengan menghitung koefisien korelasi *Rank Spearman* (melakukan perbandingan nilai t_{hitung} dengan t_{tabel}).

$$r_{\rm S} = 1 - 6 \frac{\sum d_i^2}{n(n^2 - n)}$$

Kemudian lakukan pengujian dengan uji t:

$$t_{hit} = \frac{r_s \sqrt{n-2}}{\sqrt{1-r_s^2}}$$

Selanjutnya cari nilai $t_{tabel} = t_{(n-2;1-\alpha)}$. Jika $t_{hitung} < t_{tabel}$ maka varian e_j = varian e_k sehingga semua variansi residu memiliki nilai sama.

Asumsi (iii): covarian $(e_j, e_k) = 0, j \neq k$.

Asumsi ini dibuktikan menggunakan plot residu (diagram pencar dari residu). Jika plot residu memperlihatkan pola beraturan (pola tertentu) maka asumsi tidak dipenuhi sehingga covarian $(e_j, e_k) = 0$. Dan sebaliknya, maka asumsi dipenuhi dan tidak terdapat autokorelasi antar residu.

B. Metode Penelitian

1. Objek Penelitian

Penelitian ini dilakukan di Sat Reskrim Polres Binjai di Jalan Sultan Hasanuddin No. 1, Satria, Kec. Binjai Kota, Kota Binjai, Sumatera Utara. Penelitian ini bersifat studi kasus dan melakukan riset (pengambilan data secara sekunder). Objek dalam penelitian ini adalah jenis dugaan tindak pidana di Kota Binjai yang terjadi di setiap bulannya.

2. Pengidentifikasian Masalah

Masalah pada penelitian ini adalah cukup tingginya catatan tingkat tindak pidana yang terjadi di Kota Binjai. Seseorang dalam melakukan tindak pidana dipengaruhi oleh beberapa faktor, baik faktor ekonomi, faktor lingkungan, maupun faktor sosial. Di Kota Binjai terdapat beberapa variabel tindak pidana yang sering terjadi yaitu penganiayaan, dengan pemberatan, pencurian KDRT. pencurian motor, penggelapan dokumen, dan penipuan. Oleh karena itu, pada penelitian ini akan diketahui variabel yang paling berpengaruh terhadap dugaan tindak pidana di Kota Binjai sehingga diperoleh variabel yang paling signifikan.

3. Pengumpulan Data

Pengumpulan data pada penelitian ini adalah penulis melakukan riset yang diperoleh dari Sat Reskrim Polres Binjai pada tahun 2019 dan 2020.

Berdasarkan data yang diperoleh, data dikelompokkan sebagai berikut.

Y = jumlah dugaan tindak pidana (kasus)

 X_1 = penganiayaan (orang)

 X_2 = pencurian dengan pemberatan (barang)

 $X_3 = \text{KDRT (rumah tangga)}$

 X_4 = pencurian motor (unit)

 X_5 = penggelapan dokumen (berkas)

 $X_6 = \text{penipuan (uang)}$

Tabel 1. Dugaan Tindak Pidana di Kota Binjai

No	Tahun	Bulan	Y	X1	X_2	X 3	<i>X</i> 4	X 5	X_6
1	_	Januari	89	15	17	3	5	16	4
2	_	Februari	72	8	18	4	6	1	9
3	_	Maret	76	11	15	5	11	11	10
4	_	April	84	11	14	5	7	9	16
5	_	Mei	85	9	22	4	13	7	11
6	- 2019	Juni	114	16	23	8	17	5	6
7	_	Juli	89	15	20	2	9	13	5
8	_	Agustus	119	15	21	8	15	11	18
9	_	September	82	6	11	7	7	13	13
10	_	Oktober	82	14	11	2	3	21	8
11	_	November	72	14	15	2	7	10	5
12		Desember	52	10	11	3	2	5	5
13	_	Januari	86	15	19	6	7	6	11
14	_	Februari	91	9	13	5	12	8	15
15	_	Maret	111	10	26	4	7	15	18
16	_	April	98	12	25	5	3	12	10
17	_	Mei	93	16	22	2	14	10	7
18	- 2020	Juni	115	25	25	2	11	7	15
19	_	Juli	87	11	24	1	7	13	8
20	_	Agustus	108	17	28	4	11	15	7
21	_	September	95	8	15	2	15	20	11
22	_	Oktober	84	6	13	2	8	13	11
23	_	November	109	3	28	1	26	14	11
24		Desember	81	4	19	2	19	8	6
	Tota	al	2174	280	455	89	242	263	240

C. Hasil dan Pembahasan

1. Uji Kecukupan Sampel

Dengan menggunakan rumus uji kecukupan sampel, diperoleh:

$$N' = \left[\frac{\frac{k}{s} \sqrt{N \sum Y_t^2 - (\sum Y_t)^2}}{\sum Y_t} \right]^2 = 11,943$$

Pada penelitian ini diperoleh nilai N' = 11,943 dan N' = 24 sehingga terpenuhi N' < N sehingga kesimpulan yang dapat diambil yaitu data memenuhi kriteria untuk dianalisis.

2. Persamaan Regresi Ganda antara Y dengan $X_1, X_2, ..., X_k$

a. Persamaan Regresi Ganda antara Y dengan X_1 , X_2 , X_3 , X_4 , X_5 , X_6 Untuk mengetahui koefisien regresi ganda dapat digunakan aplikasi tambahan yaitu SPSS. Dari hasil SPSS diperoleh koefisien regresi ganda, dapat dilihat pada Tabel 2.

Tabel 2. Koefisien Regresi Ganda antara Y dengan X_1 , X_2 , X_3 , X_4 , X_5 , X_6

		Coefficier	ıts ^a	
		Unstand Coeffi		Standardized Coefficients
	•		Std.	
M	odel	В	Error	Beta
1	(Constant)	9.675	6.495	
	Penganiayaan	1.096	.273	.334
	Pencuriandenga nPemberatan	1.365	.260	.467
	KDRT	1.963	.659	.255
	PencurianMotor	1.051	.247	.370
	PenggelapanDok umen	1.205	.261	.357
	Penipuan	1.116	.309	.290

Sehingga bentuk dari persamaan regresi linier berganda adalah:

$$\hat{Y} = 9,675 + 1,096X_1 + 1,365X_2 + 1,963X_3 + 1,051X_4 + 1,205X_5 + 1,116X_6$$

Selanjutnya lakukan uji korelasi parsial, dapat dilihat pada Tabel 3

Tabel 3. ANOVA antara Y dengan X_1 , X_2 , X_3 , X_4 , X_5 , X_6 ANOVA

		Sum of		Mean		
		Squares	Df	Square	F	Sig.
Pengan iayaan	Between Groups	482.833	19	25.412	1.626	.343
	Within Groups	62.500	4	15.625		
	Total	545.333	23			
Pencuri	Between Groups	679.458	19	35.761	15.057	.009
andeng anPem	Within Groups	9.500	4	2.375		
beratan	Total	688.958	23			
KDRT	Between Groups	79.458	19	4.182	.858	.643
	Within Groups	19.500	4	4.875		
	Total	98.958	23			
Pencuri anMoto	Between Groups	712.833	19	37.518	8.828	.024
r	Within Groups	17.000	4	4.250		
	Total	729.833	23			
Pengge lapanD	Between Groups	431.958	19	22.735	1.070	.535
okumen	Within Groups	85.000	4	21.250		
	Total	516.958	23			
Penipu an	Between Groups	364.500	19	19.184	2.291	.219

Within Groups	33.500	4	8.375	
Total	398.000	23		

Dengan taraf nyata 0,05 maka diperoleh $F_{parsial}$ terkecil = 0,858 (variabel X_3) dan $F_{tabel} = F_{(6,23,0.05)} = 2,53$. Karena $F_{parsial}$ terkecil $< F_{tabel}$ maka variabel X_3 dengan $F_{parsial}$ terkecil keluar dari model regresi.

b. Persamaan Regresi Ganda antara Y dengan X₁, X₂, X₄, X₅, X₆
Berikut merupakan hasil dari koefisien regresi ganda antara Y dengan X₁, X₂, X₄, X₅, X₆ yang dapat dilihat pada Tabel 4.

Tabel 4. Koefisien Regresi Ganda antara Y dengan X_1 , X_2 , X_4 , X_5 , X_6

	Coefficients ^a					
		Unstandardized Coefficients		Standardized Coefficients		
м	[ode]	В	Std. Error	Beta		
1	(Constant)	16.647	7.264	Deta		
	Penganiayaan	1.227	.323	.374		
	Pencuriandenga nPemberatan	1.250	.308	.428		
	PencurianMotor	1.055	.296	.372		
	PenggelapanDok umen	.925	.292	.274		
	Penipuan	1.514	.335	.394		

Sehingga bentuk dari persamaan regresi linier berganda adalah:

$$\hat{Y} = 16,647 + 1,227X_1 + 1,250X_2 + 1,055X_4 + 0,925X_5 + 1,514X_6$$

Selanjutnya lakukan uji korelasi parsial, dapat dilihat pada Tabel 5.

Tabel 5. ANOVA antara Y dengan X_1 , X_2 , X_4 , X_5 , X_6

	ANOVA					
		Sum of		Mean		
		Squares	Df	Square	F	Sig.
Pengani ayaan	Between Groups	482.833	19	25.412	1.626	.343
	Within Groups	62.500	4	15.625		
	Total	545.333	23			
Pencuri andeng	Between Groups	679.458	19	35.761	15.057	.009
anPemb eratan	Within Groups	9.500	4	2.375		
	Total	688.958	23			
Pencuri anMotor	Between Groups	712.833	19	37.518	8.828	.024
	Within Groups	17.000	4	4.250		
	Total	729.833	23			
Penggel apanDo	Between Groups	431.958	19	22.735	1.070	.535
kumen	Within Groups	85.000	4	21.250		
	Total	516.958	23			

Penipua n	Between Groups	364.500	19	19.184	2.291	.219
	Within Groups	33.500	4	8.375		
	Total	398,000	23			

Dengan taraf nyata 0,05 maka diperoleh $F_{parsial}$ terkecil = 1,070 (variabel X_5) dan $F_{tabel} = F_{(5,23,0.05)} = 2,64$. Karena $F_{parsial}$ terkecil $< F_{tabel}$ maka variabel X_5 dengan $F_{parsial}$ terkecil keluar dari model regresi.

c. Persamaan Regresi Ganda antara Y dengan X₁, X₂, X₄, X₆
Berikut merupakan hasil dari koefisien regresi ganda antara Y dengan X₁, X₂, X₄, X₆ yang dapat dilihat pada Tabel 6.

Tabel 6. Koefisien Regresi Ganda antara Y dengan X_1 , X_2 , X_4 , X_6

		Coefficients ^a					
		Unsta	ndardized	Standardized			
		Coe	fficients	Coefficients			
Mo	odel	В	Std. Error	Beta			
1	(Constant)	27.752 7.72					
	Penganiayaan	1.154	.391	.352			
	Pencuriandenga nPemberatan	1.262 .374 1.012 .359		.432			
	PencurianMotor			.357			
	Penipuan	1.524	.406	.396			

Sehingga bentuk dari persamaan regresi linier berganda adalah:

$$\hat{Y} = 27,752 + 1,154X_1 + 1,262X_2 + 1,012X_4 + 1,524X_6$$

Selanjutnya lakukan uji korelasi parsial, dapat dilihat pada Tabel 7.

Tabel 7. ANOVA antara Y dengan X_1 , X_2 , X_4 , X_6

ANOVA

		Sum of		Mean		
		Squares	Df	Square	F	Sig.
Pengan	Between	482.833	19	25.412	1.626	.343
iayaan	Groups	402.033	19	23.412	1.020	.343
	Within	00.500		45.005		
	Groups	62.500	4	15.625		
	Total	545.333	23			
Pencuri	Between	679.458	19	35.761	15.05	.009
andeng	Groups	679.438	19	35.761	7	.009
anPem	Within	9.500	4	2.375		
beratan	Groups	9.500	4	2.373		
	Total	688.958	23			
Pencuri	Between	712.833	19	37.518	8.828	.024
anMoto	Groups	112.033	19	37.316	0.020	.024
r	Within	17.000	4	4.250		
	Groups	17.000	4	4.250		
	Total	729.833	23			
Penipu	Between	364.500	19	19.184	2.291	.219
an	Groups	304.300	19	13.104	2.231	.219
	Within	33.500	4	8.375		
	Groups	33.300	4	0.373		
	Total	398.000	23			

Dengan taraf nyata 0,05 maka diperoleh $F_{parsial}$ terkecil = 1,626 (variabel X_l) dan $F_{tabel} = F_{(4,23,0.05)} = 2,80$. Karena $F_{parsial}$ terkecil $< F_{tabel}$ maka variabel X_l dengan $F_{parsial}$ terkecil keluar dari model regresi.

d. Persamaan Regresi Ganda antara Y dengan X₂, X₄, X₆
Berikut merupakan hasil dari koefisien regresi ganda antara Y dengan X₂, X₄, X₆ yang dapat dilihat pada Tabel 8.

Tabel 8. Koefisien Regresi Ganda antara Y dengan X_2 , X_4 , X_6

Coefficients ^a					
		Unstar	ndardized	Standardized	
		Coe	fficients	Coefficients	
M	odel	В	Std. Error	Beta	
1	(Constant)	37.247	8.264		
	Pencuriandenga nPemberatan	1.730	.398	.592	
	PencurianMotor	encurianMotor .592		.209	
	Penipuan	1.457	.477	.379	

Sehingga bentuk dari persamaan regresi linier berganda adalah:

$$\hat{Y} = 37,247 + 1,730X_2 + 0,592X_4 + 1,457X_6$$

Selanjutnya lakukan uji korelasi parsial, dapat dilihat pada Tabel 9.

Tabel 9. ANOVA antara Y dengan X_2 , X_4 , X_6

ANOVA

		AITO	• ^			
		Sum of		Mean		
		Squares	Df	Square	F	Sig.
Pencuri andeng	Between Groups	679.458	19	35.761	15.05 7	.009
anPem beratan	Within Groups	9.500	4	2.375		
	Total	688.958	23			
Pencuri anMoto	Between Groups	712.833	19	37.518	8.828	.024
r	Within Groups	17.000	4	4.250		
	Total	729.833	23			
Penipu an	Between Groups	364.500	19	19.184	2.291	.219
	Within Groups	33.500	4	8.375		
	Total	398.000	23			

Dengan taraf nyata 0,05 maka diperoleh $F_{parsial}$ terkecil = 2,291 (variabel X_6) dan $F_{tabel} = F_{(3,23,0.05)} = 3,03$. Karena $F_{parsial}$ terkecil $< F_{tabel}$ maka variabel X_6 dengan $F_{parsial}$ terkecil keluar dari model regresi.

e. Persamaan Regresi Ganda antara Y dengan *X*₂, *X*₄

Berikut merupakan hasil dari koefisien regresi ganda antara Y dengan X_2 , X_4 , yang dapat dilihat pada Tabel 10.

Tabel 10. Koefisien Regresi Ganda antara Y dengan X_2 , X_4 , X_6

	Coefficients ^a					
		Unstar	ndardized	Standardized		
		Coe	fficients	Coefficients		
Model		B Std. Error		Beta		
1	(Constant)	49.960	8.433			
	Pencuriandengan Pemberatan	1.776	.470	.608		
	PencurianMotor	.689	.457	.243		

Sehingga bentuk dari persamaan regresi linier berganda adalah:

$$\hat{Y} = 49,960 + 1,776X_2 + 0,689X_4$$

Selanjutnya lakukan uji korelasi parsial, dapat dilihat pada Tabel 11.

Tabel 11. ANOVA antara Y dengan X_2 , X_4 , X_6

ANOVA								
		Sum of Mean						
		Squares	Df	Square	F	Sig.		
Pencuri andeng anPem beratan	Between Groups	679.458	19	35.761	15.05 7	.009		
	Within Groups	9.500	4	2.375				
	Total	688.958	23					
Pencuri anMoto r	Between Groups	712.833	19	37.518	8.828	.024		
	Within Groups	17.000	4	4.250				
	Total	729.833	23					

Dengan taraf nyata 0,05 maka diperoleh $F_{parsial}$ terkecil = 8,828 (variabel X_4) dan $F_{tabel} = F_{(2,23,0.05)} = 3,42$. Karena $F_{parsial}$ terkecil > F_{tabel} maka variabel X_4 dengan $F_{parsial}$ terkecil tidak keluar atau tetap dalam model regresi.

3. Pembentukan Penduga

a. Variabel Penduga

Dari enam variabel bebas yang telah diteliti, hanya terdapat dua variabel bebas yang masuk ke dalam persamaan penduga yaitu X_2 dan X_4 .

b. Persamaan Penduga pada Metode Backward

Bentuk persamaan penduga pada Metode *Backward* dari persamaan regresi linier berganda antara *Y* dengan *X*² dan *X*⁴ adalah:

$$\hat{Y} = b_0 + b_2 X_2 + b_4 X_4$$

$$\hat{Y} = 49,960 + 1,776 X_2 + 0,689 X_4$$

Koefisien Korelasi Determinasi

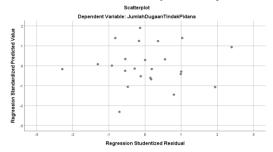
Berikut merupakan koefisien korelasi determinasi yang terbentuk oleh Metode *Backward*.

Tabel 12. Koefisien Determinasi pada variabel X_2 , X_4

Model Summary ^b							
		R	Adjusted R	Std. Error of			
Model	R	Square	Square	the Estimate			
1	.744a	.554	.483	11.500			
a. Predictors: (Constant), PencuriandenganPemberatan, Pencuri							
b. Dependent Variable: JumlahDugaanTindakPidana							

Besarnya nilai koefisien determinasi (R^2) pada variabel X_2 , X_4 sebesar 0,554 atau sama dengan 55,4%. Dari hasil tersebut dapat disimpulkan bahwa variabel bebas dengan bersama-sama (simultan) berpengaruh terhadap variabel terikat sebesar 55,4%, sedangkan sisanya dipengaruhi variabel lain diluar persamaan regresi.

d. Analisa Residu


Dalam menganalisis residu dapat menggunakan tabel yang dapat dilihat pada Tabel 13.

Tabel 13. Koefisien Korelasi Rank Spearman dan Residu

No	Y	Ŷ	e_{j}	Rank Ŷ	Rank e	D	d^2
1	89	83,597	5,403	17	10	7	49
2	72	86,062	-14,062	15	22	-7	49
3	76	84,179	-8,179	16	17	-1	1
4	84	79,647	4,353	20	11	9	81
5	85	97,989	-12,989	7	21	-14	196
6	114	102,521	11,479	3	3	0	0
7	89	91,681	-2,681	12	15	-3	9
8	119	97,591	21,409	8	1	7	49
9	82	74,319	7,681	22	8	14	196
10	82	71,563	10,437	23	4	19	361
11	72	81,423	-9,423	18	19	-1	1
12	52	70,874	-18,874	24	24	0	0
13	86	88,527	-2,527	13	14	-1	1
14	91	81,316	9,684	19	6	13	169
15	111	100,959	10,041	5	5	0	0
16	98	96,427	1,573	11	12	-1	1
17	93	98,678	-5,678	6	16	-10	100
18	115	101,939	13,061	4	2	2	4
19	87	97,407	-10,407	9	20	-11	121
20	108	107,267	0,733	2	13	-11	121
21	95	86,935	8,065	14	7	7	49
22	84	78,56	5,44	21	9	12	144
23	109	117,602	-8,602	1	18	-17	289
24	81	96,795	-15,795	10	23	-13	169
Total	2174	2173,858	0	300	300	0	2160

Penduga yang diperoleh akan dibuktikan pada asumsi (i), (ii), (iii).

- 1) Asumsi (i): Rata-rata residu $(e_j) = 0$ terpenuhi.
- 2) Asumsi (ii): Variansi (e) = variasi (ek) = σ^2 . Karena N = 24 dan α = 0,05 maka t_{tabel} = $t_{(n-2;1-\alpha)} = t_{(22;0,95)} = 1,717$, dengan membandingkan t_{hitung} dengan t_{tabel} maka didapatkan $t_{hitung} < t_{tabel}$ atau 0,286 < 1,717. Maka dapat diambil kesimpulan bahwa asumsi variansi (e_j) = variansi (e_k) = σ^2 terpenuhi.
- 3) Asumsi (iii): Covarian $(e_j, e_k) = 0, j \neq k$.

Gambar 1. Uji Heteroskedastisitas

Pada gambar 1 tampak bahwa titik-titik memencar tidak beraturan atau tidak ada pola tertentu yang terbentuk, artinya asumsi terpenuhi dan tidak ditemukan heteroskedastisitas pada model regresi. Artinya, model regresi dapat digunakan dalam memprediksi variabel yang paling berpengaruh pada peningkatan dugaan tindak pidana di Kota Binjai berdasarkan variabel bebasnya.

D. Kesimpulan dan Saran

1. Kesimpulan

Berdasarkan pembahasan dan hasil pengolahan data dalam menentukan variabel yang paling berpengaruh terhadap dugaan tindak pidana di Kota Binjai, maka dapat diambil kesimpulan yaitu:

- a. Terdapat dua variabel yang paling berpengaruh terhadap dugaan tindak pidana di Kota Binjai yaitu X_2 (pencurian dengan pemberatan) dan X_4 (pencurian motor). Persamaan regresi linier berganda menggunakan Metode Backward diperoleh: $Y=49,960+1,776X_2+0,689X_4$
- b. Korelasi antara variabel terikat dengan variabel bebas diperoleh hubungan paling kuat adalah jumlah dugaan tindak pidana terhadap pencurian dengan pemberatan dengan nilai 0,771.
- c. Dari pembahasan penduga, terlihat bahwa model regresi yang dipergunakan cukup baik

dalam menduga dugaan tindak pidana di Kota Binjai.

2. Saran

Terdapat saran penulis untuk pengembangan penelitian ini adalah:

- a. Pada penelitian ini menggunakan enam variabel yaitu penganiayaan, pencurian dengan pemberatan, KDRT, pencurian motor, penggelapan dokumen dan penipuan, maka penelitian selanjutnya diharapkan menambahkan variabel-variabel seperti pencabulan, pembunuhan dan variabel lainnya.
- b. Dapat menggunakan metode lain untuk menentukan variabel yang paling signifikan terhadap jumlah peningkatan dugaan tindak pidana di Kota Binjai seperti Metode *Stepwise* dan Metode *Forward*.
- c. Pihak kepolisian Sat Reskrim Polres Binjai agar lebih memperhatikan dan memfokuskan penanganan dua kasus yang paling berpengaruh terhadap jumlah dugaan tindak pidana berdasarkan hasil penelitian ini yaitu pencurian dengan pemberatan dan pencurian motor.

E. Daftar Pustaka

Algifari. (2000). Analisis Regresi : Teori, Kasus, dan Solusi. Yogyakarta: BPFE.

Anton, Howard. (2004). Aljabar Linear Elementer. Jakarta: Erlangga.

- Desrina, R, Mardiningsih, & Bu'ulolo, F. (2013). Menentukan Model Persamaan Regresi Linier Berganda dengan Metode Backward (Kasus Penyalahgunaan Narkoba di Tanah Karo). Saintia Matematika, 1(3), 285-297.
- Draper, N. R., & Harry, S. (1992). Analisis Regresi Terapan. Jakarta: Gramedia Pustaka Utama.
- Ghozali, Imam. (2005). Aplikasi Analisis Multivariate Dengan Program SPSS Edisi 3. Semarang: Badan Penerbit Universitas Diponegoro.
- Retnaningsih, E., & Indrasetianingsih, A. (2010). Multikolinier pada Analisis Tingkat Kejernihan Air Minum Menggunakan Metode Backward, Regresi Komponen Utama dan Regresi

- Ridge. Stigma Journal of Science, 4(1), 35-41.
- Ningsih, S., & Dukalang, H. H. (2019). Penerapan metode Suksesif Interval Pada Analsis Regresi Linier Berganda. Jambura Journal of Mathematics, 1(1), 43-53.
- Sembiring, R. K. (1995). Analisis Regresi. Bandung: Penerbit ITB.
- Sugiyono. (2016). Metode Penelitian Kuantitatif, Kualitatif, dan R&D. Bandung: Alfabeta.
- Utama, C. (2009). Dengan Pendekatan Matriks dalam Regresi. Bina Ekonomi Majalah Ilmiah Fakultas Ekonomi Unpar, 13(1), 96-104.