Penaksiran Parameter Distribusi Weibull Menggunakan Algoritma Genetika dan Particle Swarm Optimization
DOI:
https://doi.org/10.47662/farabi.v5i2.401Kata Kunci:
Parameter Estimation, Weibull Distribution, Genetic Algorithm, Particle Swarm OptimizationAbstrak
This study aims toestimate and compare the results of the estimated parameters of the Weibull distributionusing the Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). The Weibull distribution used is a two-parameter Weibull distribution and a three-parameterWeibull distribution. In the GA Algorithm, there are evolution operators such as crossover and mutation. Meanwhile, in PSO algorithm doesn’t. The evolution operators that can optimize complex problems and a very wide search space Evaluation of the two method is carried out by observing the difference in the resulting fitness values.Based on the simulation data from the estimator obtained using the R program, it is found that the two-parameter Weibull distribution parameter and a three-parameterWeibull distribution using a AG algorithm are both used in this distribution. This is supported by the small difference in the fitness value of the GA algorithm obtained compared to the PSO algorithm. The sample space also affects the difference in fitness. The large the sample space, the greater the fitness.
Referensi
Y. Bard, Nonlinear parameter estimation. New York: Academic Press, 1974.
L. G. Otaya, “Distribusi probabilitas weibull dan aplikasinya (pada persoalan keandalan (reliability) dan analisis rawatan (mantainability),” Tadbir: Jurnal Manajemen Pendidikan Islam, vol. 4, no. 2, pp. 44–66, 2016.
Y. Arkeman, Algoritma genetika: teori dan aplikasinya untuk bisnis dan industri. PT Penerbit IPB Press, 2012.
B. Santosa and P. Willy, Metoda Metaheuristik konsep dan implementasi. Guna Widya, Surabaya, 2011.
H. Rinne, The Weibull distribution: a handbook. Chapman and Hall/CRC, 2008.
L. Bain and E. M., Introduction to Probability and Mathematical Statistics. Duxbury Press, 1992.
T. Ferdian, A. Afriyudi, and B. Mutakin, “Optimasi penjadwalan perkuliahan di universitas tridinanti palembang,” JURNAL MAHASISWA TI S1, 2013.
R. L. Haupt and S. E. Haupt, Practical genetic algorithms. John Wiley & Sons, 2004.
J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of ICNN’95- international conference on neural networks, vol. 4. IEEE, 1995, pp. 1942–1948.
R.-M. Chen and H.-F. Shih, “Solving university course timetabling problems using constriction particle swarm optimization with local search,” Algorithms, vol. 6, no. 2, pp. 227–244, 2013.
Q. Bai, “Analysis of particle swarm optimization algorithm,” Computer and information science, vol. 3, no. 1, p. 180, 2010.
Unduhan
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2022 FARABI: Jurnal Matematika dan Pendidikan Matematika

Artikel ini berlisensiCreative Commons Attribution-ShareAlike 4.0 International License.