Comparison of Fuzzy Logic and Multiple Linear Regression in Forecasting Rice Production in Toba District

Penulis

  • Agustaeys Pasaribu Student of Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara Medan-Indonesia 20155
  • M.R Syahputra Mathematics Undergraduate Study Program, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara Medan-Indonesia 20155

DOI:

https://doi.org/10.47662/farabi.v5i2.392

Abstrak

The purpose of this study is to forecast rice production in Toba Regency in the future. Factors affecting rice production studied are land area, subsidized fertilizers, rice pest populations, average rainfall on rainy days. The methods used in this study are fuzzy logic methods and linear regression. This study compared more accurate forecasting results based on errors from both methods. The data used is secondary data from the Toba Regency Agriculture Office. The data studied were in the form of data on rice production, land area, subsidized fertilizers, pest populations, average rainfall and rainy days in 2016-2021. This research was conducted with the help of matlab toolbox fuzzy and SPSS software. From the forecasting results obtained, the multiple linear regression method is closer to the actual result of 878,428.07 Tons compared to using fuzzy logic of 1,032,300 Tons. Based on the error standards of the two methods, it can be concluded that the multiple linear regression method has a more accurate result with an error of 3.11% compared to the fuzzy logic method with an error of 22.05%.

Keywords : Rice, Production, Fuzzy Logic, Linear Regression, Standard Error.

Referensi

Arfina, S., & Tommi, P. (2018). Pemilihan Metode Peramalan dalam Manajemen Persediaan Produk Pertanian. Agroteknologi dan Agribisnis, 2(1).

Biyanto, D. W., & Siti, R. (2019). Pengaruh Employee Terhadap Kinierja Karyawan Direktorat Sistem Informasi dan Trnasformasi Digital Institut Pertanian Bogor. Jurnal Manajeman dan Organisasi, 10(2), 133-146.

Ishak, A. (2010). Manajemen Operasi. Yogyakarta: Graha Ilmu.

Isnain, G., Ainie, K., Muhammad, F. M., Ari, B. P., & Jatmiko, E. S. (2021). Penentuan Curah Hujan Berdasarkan Input Cuaca Menggunakan Metode Logika Fuzzy Mamdani. Jurnal Pengabdian Vokasi, 02(01).

Jay, H., & Barry, R. (2009). Manajemen Operasi Buku 1 Edisi 9. Jakarta: Salemba .

Sri, K. (2002). Analisis Desain Sistem Fuzzy Menggunakan Tol Box Matlab. Yogyakarta: Graha Ilmu.

tobakab.go.id. (2022). Retrieved Februari 17, 2022, from https://tobakab.go.id/

tobasamosirkab.go.id. (2022). Retrieved April 10, 2022, from https://tobasamosirkab.bps.go.id/

Tri, A., Made, A., & Lien, D. (2019). ANALISIS FAKTOR-FAKTOR YANG MEMEGARUHI PRODUKSI PADI SAWAH DI DESA UETOLI KEACAMATAN AMPANA TETE KABUPATEN TOJO UNA-UNA. Jurnal Agroland, 2(26), 111-122.

Yosefina, M. F., I Made, N. T., & I Dewa, G. A. (2018). Faktor Faktor yang Mempengaruhi Produksi Padi Sawah di Kecamatan Biboki Moenleu Kabupaten Timor Tengah Utara Provinsi Nuasa Tenggara Timur. Jurnal Agribisnis Lahan Kering, 34, 64-66.

Yulia, R. S., Lidya, R. A., & Maha, R. (2021). Perbadningan Analisis Logika Fuzzy dan Regresi Linier Berganda dalam Menentukan Produksi Beras Nasional. Komtekinfo, 4, 239-248

Unduhan

Diterbitkan

2022-09-17

Cara Mengutip

Pasaribu, A. ., & Syahputra, M. . (2022). Comparison of Fuzzy Logic and Multiple Linear Regression in Forecasting Rice Production in Toba District. FARABI: Jurnal Matematika Dan Pendidikan Matematika , 5(2), 121–127. https://doi.org/10.47662/farabi.v5i2.392

Terbitan

Bagian

Articles