Perbandingan Akurasi Metode Fuzzy Mamdani dan Fuzzy Sugeno dalam Memprediksi Kebutuhan Darah PMI Kota Medan
DOI:
https://doi.org/10.47662/farabi.v7i2.757Kata Kunci:
Fuzzy Mamdani, Fuzzy Sugeno, Kebutuhan Darah, MAPE, PrediksiAbstrak
Blood demand prediction is important to avoid the instability of blood stocks or supplies. Too much and abundant blood stock can cause losses, because the blood will be wasted when it passes the storage expiration date. Meanwhile, too little stock can risk a shortage of blood supply. To anticipate this, it is necessary to predict the amount of blood demand that must be received in the future in order to achieve optimum blood availability. Fuzzy Mamdani and Fuzzy Sugeno methods that use the concept of fuzzy logic are considered capable of handling complexity and uncertainty in decision making, so they can be used to predict the amount of blood demand by considering the varying and uncertain amounts of blood demand and supply. The calculation results show that the Fuzzy Mamdani method has better accuracy than the Fuzzy Sugeno method with MAPE values of 16.707% and 17.987% respectively. The Fuzzy Mamdani method has an accuracy level in the good category according to the MAPE method and can be used to predict blood demand at PMI Medan.
Referensi
Al-adawiyah, S. H., Alisah, E., & Aziz, A. (2022). Perbandingan Tingkat Akurasi Metode Average Based Fuzzy Time Series Markov Chain dan Algoritma Novel Fuzzy Time Series. 1(3), 129–142.
Bakri, R., Rahma, A. N., Suryani, I., & Sari, Y. (2020). Penerapan Logika Fuzzy Dalam Menentukan Jumlah Peserta BPJS Kesehatan Menggunakan Fuzzy Inference System Sugeno. 1(3), 182–192.
Kusumadewi, Sri. (2002). Analisis Desain Sistem Fuzzy Menggunakan Tool Box Matlab. Yogyakarta: Graha Ilmu.
Muflihunna, K., & Mashuri, M. (2022). Penerapan Metode Fuzzy Mamdani dan Metode Fuzzy Sugeno dalam Penentuan Jumlah Produksi. 11(1), 27–37.
Nabillah, I., & Ranggadara, I. (2020). Mean Absolute Percentage Error untuk Evaluasi Hasil Prediksi Komoditas Laut. 5(2), 250–255.
Neonbeni, S., Mada, G. S., Blegur, F. M. A. (2022). Analisis Perbandingan Metode Defuzzifikasi Fuzzy Inference System Mamdani Dalam Penentuan Produksi Tua Kolo (Sopi Timor) 45% Pada Pabrik Sane Up-Ana Kefamenanu. 5(2), 34 – 39.
Nisa, A., & Harefa, K. (2023). Penerapan Metode Fuzzy Inference System Untuk Memprediksi Jumlah Pembelian Stok Barang (Studi Kasus: Toko Yanto Grosir). 1(4), 939–953.
Puspitasari, N., Septiarini, A., Octavia, O., Wati, M., & Hatta, H. R. (2022). Penerapan Metode Fuzzy Sugeno dalam Memprediksi Permintaan Darah. 10(4), 435 - 445.
Pasaribu, A., Syahputra, M., R. (2022). Comparison of Fuzzy Logic and Multiple Linear Regression in Forecasting Rice Production in Toba District. 5(2),121 - 127
Sahulata, E. R. Y., Wattimanela, H. J., & Noya Van Delsen, M. S. (2020). Penerapan Fuzzy Inference System Tipe Mamdani Untuk Menentukan Jumlah Produksi Roti Berdasarkan Data Jumlah Permintaan Dan Persediaan (Studi Kasus Pabrik Cinderela Bread House Di Kota Ambon). 14(1), 079–090.
Setyawan, M. Y. H., & Nikica, M. F. (2020). Monograf Pengendalian Anggaran Dengan Metode Fuzzy Logic Sugeno Dan Fuzzy Mamdani. Kreatif Industri Nusantara. Yogyakarta: Graha Ilmu
Wawan, Zuniati, M., Setiawan, A. (2021). Optimization of National Rice Production with Fuzzy Logic using Mamdani Method. 1(1), 36–43.
Unduhan
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2024 Vira Amalia Putri, Suryati Sitepu
Artikel ini berlisensiCreative Commons Attribution-ShareAlike 4.0 International License.